主要学术论文 1. B.S. He, L-Z Liao and S.L. Wang, Self-adaptive operator splitting methods for monotone variational inequalities, 〖Numerische Mathematik〗2003 2.B.S. He, L. Z. Liao and Z.H. Yang, A new approximate proximal point algorithm for maximal monotone operator, 〖Science in China, Series A〗2002 3. B.S.He, L-Z Liao, D.R. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, 〖Mathematical Programming〗92: 103-118 (2002) 4. B.S. He, H. Yang, Q. Meng and D.R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strongly monotone variational inequalities, 〖Journal of Optimization Theory and Applications〗 112: 129-143 (2002) 5. B.S He and L-Z Liao, Improvements of some projection methods for monotone nonlinear variational inequalities,〖Journal of Optimization Theory and Applications〗 112: 111-128, (2002) 6. D.R. Han and B.S. He, A new accuracy criterion for approximate proximal point algorithms, 〖J. Mathematical Analysis and Applications〗263: 343-354, (2001) 7. S.L. Wang, H. Yang and B.S. HE, Inexact implicit method with variable parameter for mixed variational inequalities, 〖Journal of Optimization Theory and Applications〗, 111: 431-443 (2001) 8. S.L. Wang, H. Yang and B.S. He, Solving a class of asymmetric variational inequalities by a new alternating direction method, 〖Computer and Mathematics with Applications〗 40: 927-937 (2000) 9. B.S. He, H. Yang and S.L. Wang, Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities, 〖Journal of Optimization Theory and applications〗 106... 主要学术论文 1. B.S. He, L-Z Liao and S.L. Wang, Self-adaptive operator splitting methods for monotone variational inequalities, 〖Numerische Mathematik〗2003 2.B.S. He, L. Z. Liao and Z.H. Yang, A new approximate proximal point algorithm for maximal monotone operator, 〖Science in China, Series A〗2002 3. B.S.He, L-Z Liao, D.R. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, 〖Mathematical Programming〗92: 103-118 (2002) 4. B.S. He, H. Yang, Q. Meng and D.R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strongly monotone variational inequalities, 〖Journal of Optimization Theory and Applications〗 112: 129-143 (2002) 5. B.S He and L-Z Liao, Improvements of some projection methods for monotone nonlinear variational inequalities,〖Journal of Optimization Theory and Applications〗 112: 111-128, (2002) 6. D.R. Han and B.S. He, A new accuracy criterion for approximate proximal point algorithms, 〖J. Mathematical Analysis and Applications〗263: 343-354, (2001) 7. S.L. Wang, H. Yang and B.S. HE, Inexact implicit method with variable parameter for mixed variational inequalities, 〖Journal of Optimization Theory and Applications〗, 111: 431-443 (2001) 8. S.L. Wang, H. Yang and B.S. He, Solving a class of asymmetric variational inequalities by a new alternating direction method, 〖Computer and Mathematics with Applications〗 40: 927-937 (2000) 9. B.S. He, H. Yang and S.L. Wang, Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities, 〖Journal of Optimization Theory and applications〗 106: 349-368 (2000) 10. B.S. He and H. Yang, A neural network model for monotone asymmetric linear variational inequalities, 〖IEEE Transactions on Neural Networks〗11: 3-1(2000) 11. B.S. He, Solving trust region problem in large scale optimization, 〖Journal of Computational Mathematics〗18: 1-12 (2000) 12. B.S. He and J. Zhou, A modified alternating direction method for convex quadratic minimization problems, 〖Applied Mathematics Letters〗13: 123-130 (2000) . |