第七章 生物氧化
一、生物氧化的概念和特点:
物质在生物体内氧化分解并释放出能量的过程称为生物氧化。与体外燃烧一样,生物氧化也是一个消耗O2,生成CO2和H2O,并释放出大量能量的过程。但与体外燃烧不同的是,生物氧化过程是在37℃,近于中性的含水环境中,由酶催化进行的;反应逐步释放出能量,相当一部分能量以高能磷酸酯键的形式储存起来。
二、线粒体氧化呼吸链:
在线粒体中,由若干递氢体或递电子体按一定顺序排列组成的,与细胞呼吸过程有关的链式反应体系称为呼吸链。这些递氢体或递电子体往往以复合体的形式存在于线粒体内膜上。主要的复合体有:
1. 复合体Ⅰ(NADH-泛醌还原酶):由一分子NADH还原酶(FMN),两分子铁硫蛋白(Fe-S)和一分子CoQ组成,其作用是将(NADH+H+)传递给CoQ。
铁硫蛋白分子中含有非血红素铁和对酸不稳定的硫。其分子中的铁离子与硫原子构成一种特殊的正四面体结构,称为铁硫中心或铁硫簇,铁硫蛋白是单电子传递体。泛醌(CoQ)是存在于线粒体内膜上的一种脂溶性醌类化合物。分子中含对苯醌结构,可接受二个氢原子而转变成对苯二酚结构,是一种双递氢体。
2. 复合体Ⅱ(琥珀酸-泛醌还原酶):由一分子琥珀酸脱氢酶(FAD),两分子铁硫蛋白和两分子Cytb560组成,其作用是将FADH2传递给CoQ。
细胞色素类:这是一类以铁卟啉为辅基的蛋白质,为单电子传递体。细胞色素可存在于线粒体内膜,也可存在于微粒体。存在于线粒体内膜的细胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒体的细胞色素有CytP450和Cytb5。
3. 复合体Ⅲ(泛醌-细胞色素c还原酶):由两分子Cytb(分别为Cytb562和Cytb566),一分子Cytc1和一分子铁硫蛋白组成,其作用是将电子由泛醌传递给Cytc。
4. 复合体Ⅳ(细胞色素c氧化酶):由一分子Cyta和一分子Cyta3组成,含两个铜离子,可直接将电子传递给氧,故Cytaa3又称为细胞色素c氧化酶,其作用是将电子由Cytc传递给氧。
三、呼吸链成分的排列顺序:
由上述递氢体或递电子体组成了NADH氧化呼吸链和琥珀酸氧化呼吸链两条呼吸链。
1.NADH氧化呼吸链:其递氢体或递电子体的排列顺序为:NAD+ →[ FMN (Fe-S)]→CoQ→b(Fe-S)→ c1 → c →aa3 →1/2O2 。丙酮酸、α-酮戊二酸、异柠檬酸、苹果酸、β-羟丁酸、β-羟脂酰CoA和谷氨酸脱氢后经此呼吸链递氢。
2.琥珀酸氧化呼吸链:其递氢体或递电子体的排列顺序为: [ FAD (Fe-S)]→CoQ→b(Fe-S)→ c1 → c →aa3 →1/2O2 。琥珀酸、3-磷酸甘油(线粒体)和脂酰CoA脱氢后经此呼吸链递氢。
四、生物体内能量生成的方式:
1.氧化磷酸化:在线粒体中,底物分子脱下的氢原子经递氢体系传递给氧,在此过程中释放能量使ADP磷酸化生成ATP,这种能量的生成方式就称为氧化磷酸化。
2.底物水平磷酸化:直接将底物分子中的高能键转变为ATP分子中的末端高能磷酸键的过程称为底物水平磷酸化。
五、氧化磷酸化的偶联部位:
每消耗一摩尔氧原子所消耗的无机磷的摩尔数称为P/O比值。当底物脱氢以NAD+为受氢体时,P/O比值约为3;而当底物脱氢以FAD为受氢体时,P/O比值约为2。故NADH氧化呼吸链有三个生成ATP的偶联部位,而琥珀酸氧化呼吸链只有两个生成ATP的偶联部位。
六、氧化磷酸化的偶联机制:
目前公认的机制是1961年由Mitchell提出的化学渗透学说。这一学说认为氧化呼吸链存在于线粒体内膜上,当氧化反应进行时,H+通过氢泵作用(氧化还原袢)被排斥到线粒体内膜外侧(膜间腔),从而形成跨膜pH梯度和跨膜电位差。这种形式的能量,可以被存在于线粒体内膜上的ATP合酶利用,生成高能磷酸基团,并与ADP结合而合成ATP。
在电镜下,ATP合酶分为三个部分,即头部,柄部和基底部。但如用生化技术进行分离,则只能得到F0(基底部+部分柄部)和F1(头部+部分柄部)两部分。ATP合酶的中心存在质子通道,当质子通过这一通道进入线粒体基质时,其能量被头部的ATP合酶催化活性中心利用以合成ATP。
七、氧化磷酸化的影响因素:
1.ATP/ADP比值:ATP/ADP比值是调节氧化磷酸化速度的重要因素。ATP/ADP比值下降,可致氧化磷酸化速度加快;反之,当ATP/ADP比值升高时,则氧化磷酸化速度减慢。
2.甲状腺激素:甲状腺激素可以激活细胞膜上的Na+,K+-ATP酶,使ATP水解增加,因而使ATP/ADP比值下降,氧化磷酸化速度加快。
3.药物和毒物:
⑴呼吸链的抑制剂:能够抑制呼吸链递氢或递电子过程的药物或毒物称为呼吸链的抑制剂。能够抑制第一位点的有异戊巴比妥、粉蝶霉素A、鱼藤酮等;能够抑制第二位点的有抗霉素A和二巯基丙醇;能够抑制第三位点的有CO、H2S和CN-、N3-。其中,CN-和N3-主要抑制氧化型Cytaa3-Fe3+,而CO和H2S主要抑制还原型Cytaa3-Fe2+。
⑵解偶联剂:不抑制呼吸链的递氢或递电子过程,但能使氧化产生的能量不能用于ADP的磷酸化的试剂称为解偶联剂。其机理是增大了线粒体内膜对H+的通透性,使H+的跨膜梯度消除,从而使氧化过程释放的能量不能用于ATP的合成反应。主要的解偶联剂有2,4-二硝基酚。
⑶氧化磷酸化的抑制剂:对电子传递和ADP磷酸化均有抑制作用的药物和毒物称为氧化磷酸化的抑制剂,如寡霉素。
八、高能磷酸键的类型:
生物化学中常将水解时释放的能量>20kJ/mol的磷酸键称为高能磷酸键,主要有以下几种类型:
1.磷酸酐键:包括各种多磷酸核苷类化合物,如ADP,ATP等。
2.混合酐键:由磷酸与羧酸脱水后形成的酐键,主要有1,3-二磷酸甘油酸等化合物。
3.烯醇磷酸键:见于磷酸烯醇式丙酮酸中。
4.磷酸胍键:见于磷酸肌酸中,是肌肉和脑组织中能量的贮存形式。磷酸肌酸中的高能磷酸键不能被直接利用,而必须先将其高能磷酸键转移给ATP,才能供生理活动之需。这一反应过程由肌酸磷酸激酶(CPK)催化完成。
九、线粒体外NADH的穿梭:
胞液中的3-磷酸甘油醛或乳酸脱氢,均可产生NADH。这些NADH可经穿梭系统而进入线粒体氧化磷酸化,产生H2O和ATP。
1.磷酸甘油穿梭系统:这一系统以3-磷酸甘油和磷酸二羟丙酮为载体,在两种不同的α-磷酸甘油脱氢酶的催化下,将胞液中NADH的氢原子带入线粒体中,交给FAD,再沿琥珀酸氧化呼吸链进行氧化磷酸化。因此,如NADH通过此穿梭系统带一对氢原子进入线粒体,则只得到2分子ATP。
2.苹果酸穿梭系统:此系统以苹果酸和天冬氨酸为载体,在苹果酸脱氢酶和谷草转氨酶的催化下。将胞液中NADH的氢原子带入线粒体交给NAD+,再沿NADH氧化呼吸链进行氧化磷酸化。因此,经此穿梭系统带入一对氢原子可生成3分子ATP。
考博生物化学与分子生物学重点第七章
第七章 生物氧化一、生物氧化的概念和特点:物质在生物体内氧化分解并释放出能量的过程称为生物氧化。与体外燃烧一样,生物氧化
本页标签: 考博生物化学与分子生物学 博生物化学与分子生物学重点
上一篇:
东北农业大学各学院2013考研复试方
下一篇:
浙江传媒学院2020年硕士研究生招生
推荐阅读
复试经验02-12 672
复试经验02-12 788
复试经验02-12 814
复试经验02-12 746
复试经验02-12 999
复试经验02-12 636